4,589 research outputs found

    GeMs/GSAOI observations of La Serena 94: an old and far open cluster inside the solar circle

    Full text link
    Physical properties were derived for the candidate open cluster La Serena 94, recently unveiled by the VVV collaboration. Thanks to the exquisite angular resolution provided by GeMS/GSAOI, we could characterize this system in detail, for the first time, with deep photometry in JHKs_{s} - bands. Decontaminated JHKs_{s} diagrams reach about 5 mag below the cluster turnoff in H. The locus of red clump giants in the colour - colour diagram, together with an extinction law, was used to obtain an average extinction of AV=14.18±0.71A_V =14.18 \pm 0.71. The same stars were considered as standard - candles to derive the cluster distance, 8.5±1.08.5 \pm 1.0 kpc. Isochrones were matched to the cluster colour - magnitude diagrams to determine its age, logt(yr)=9.12±0.06\log{t(yr)}=9.12\pm 0.06, and metallicity, Z=0.02±0.01Z=0.02\pm0.01. A core radius of rc=0.51±0.04r_{c}=0.51\pm 0.04 pc was found by fitting King models to the radial density profile. By adding up the visible stellar mass to an extrapolated mass function, the cluster mass was estimated as M=(2.65±0.57)×103M=(2.65\pm0.57) \times 10^3 M_{\odot}, consistent with an integrated magnitude of MK=5.82±0.16M_{K}=-5.82\pm0.16 and a tidal radius of rt=17.2±2.1r_{t}=17.2\pm2.1 pc. The overall characteristics of La Serena 94 confirm that it is an old open cluster located in the Crux spiral arm towards the fourth Galactic quadrant and distant 7.30±0.497.30\pm 0.49 kpc from the Galactic centre. The cluster distorted structure, mass segregation and age indicate that it is a dynamically evolved stellar system.Comment: 16 pages, 24 figures, 2 Tables, accepted by MNRAS; corrected typo

    Shear stress measurements over smooth and rough channel beds

    Get PDF
    River hydrodynamicsBed roughness and flow resistanc

    Inertial forces in the Casimir effect with two moving plates

    Full text link
    We combine linear response theory and dimensional regularization in order to derive the dynamical Casimir force in the low frequency regime. We consider two parallel plates moving along the normal direction in DD-dimensional space. We assume the free-space values for the mass of each plate to be known, and obtain finite, separation-dependent mass corrections resulting from the combined effect of the two plates. The global mass correction is proportional to the static Casimir energy, in agreement with Einstein's law of equivalence between mass and energy for stressed rigid bodies.Comment: 9 pages, 1 figure; title and abstract changed; to appear in Physical Review

    Thyroid nodule management: clinical, ultrasound and cytopathological parameters for predicting malignancy

    Get PDF
    Although fine-needle aspiration cytology is considered to be the reference method for evaluating thyroid nodules, the results are inaccurate in approximately 10-30% of cases. Several studies have attempted to predict the risk of malignancy in thyroid nodules based on age, nodularity, thyrotropin values, thyroid autoimmune disease, hot/cold nodule status, and ultrasound parameters. However, no consensus has been found, and none of these parameters has significantly affected patient management. The management of indeterminate thyroid nodules and re-biopsies of nodules with initially benign cytological results remain important and controversial topics of discussion. The Bethesda cytological system and several studies on the use of molecular markers to predict malignancy from cytological samples of thyroid nodules need further clarification. More in-depth discussions among and continuous education of the specialists involved in treating thyroid disease are necessary to improve the management of these patients. This review aims to examine the clinical, laboratory, ultrasound, and scintigraphic parameters that can be used for thyroid nodule management

    A blockchain and gamification approach for smart parking

    Get PDF
    City parking is increasingly complex and available parking spaces are scarce. Being able to identify a space to park their cars can lead many drivers to drive around the intended parking area several times, increasing traffic density and pollution. In this research we propose a collaborative blockchain solution with gamification for parking. Users collaborate to report free spaces and receive free parking minutes for their service to the community. In parallel, this approach can be used to collect beacon information from the parked vehicles and create a low-cost collaborative approach for managing a parking control process platform Blockchain that can handle this distributed process and the gamification platform increases users’ participation.info:eu-repo/semantics/acceptedVersio

    Dust Emission from Active Galactic Nuclei

    Get PDF
    Unified schemes of active galactic nuclei (AGN) require an obscuring dusty torus around the central source, giving rise to Seyfert 1 line spectrum for pole-on viewing and Seyfert 2 characteristics in edge-on sources. Although the observed IR is in broad agreement with this scheme, the behavior of the 10 micron silicate feature and the width of the far-IR emission peak remained serious problems in all previous modeling efforts. We show that these problems find a natural explanation if the dust is contained in about 5-10 clouds along radial rays through the torus. The spectral energy distributions (SED) of both type 1 and type 2 sources are properly reproduced from different viewpoints of the same object if the visual optical depth of each cloud is larger than about 60 and the clouds' mean free path increases roughly in proportion to radial distance.Comment: 11 pages, submitted to ApJ Letter

    Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges

    Get PDF
    The clinical translation of new cancer theranostic has been delayed by inherent cancerâ s heterogeneity. Additionally, this delay has been enhanced by the lack of an appropriate in vitro model, capable to produce accurate data. Nanoparticles and microfluidic devices have been used to obtain new and more efficient strategies to tackle cancer challenges. On one hand, nanoparticles-based therapeutics can be modified to target specific cells, and/or molecules, and/or modified with drugs, releasing them over time. On the other hand, microfluidic devices allow the exhibition of physiologically complex systems, incorporation of controlled flow, and control of the chemical environment. Herein, we review the use of nanoparticles and microfluidic devices to address different cancer challenges, such as detection of CTCs and biomarkers, point-of-care devices for early diagnosis and improvement of therapies. The future perspectives of cancer challenges are also addressed herein.F.R. Maia acknowledges Portuguese Foundation for Scienceand Technology (FCT) for her work contract under theTransitional Rule DL 57/2016 (CTTI-57/18-I3BS5). J. M.Oliveira thanks FCT for his distinction attributed under theFCT Investigator program (IF/01285/2015)
    corecore